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Proper actions
Recall: A group action G ↷ X is proper iff

∀K ,W ⊆ X compact : {g ∈ G : gK ∩W } is compact.

Then: Define a Cc(G ,C0(X )) ⊆ C0(X )⋊ G -inner product on
Cc(X ) by

⟨ξ, η⟩(g , x) := ∆(g)−1/2ξ(x)η(g−1x).

Thus Cc(X ) completes to a C0(X )⋊ G -Hilbertmodule F(X ).
It is full, iff G ↷ X is free, i.e., if gx = x ⇒ g = e ∀(g , x).

We get

C0(G\X ) ∼= K(F(X )) via (f · ξ)(x) = f (Gx)ξ(x).

Therefore F(X ) becomes a

C0(G\X )− ⟨F(X ),F(X )⟩ ⊆ C0(X )⋊ G

equivalence bimodule.
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Rieffel proper actions
Now let α : G ↷ A. Let L1∆(G ,A) = ∆1/2L1(G ,A) ∩ L1(G ,A).
α is Rieffel proper iff there exists a dense subspace R ⊆ A s.t.

⟨ξ, η⟩A⋊rG := [g 7→ ∆(g)−1/2ξ∗αg (η)] ∈ L1∆(G ,A) ∀ξ, η ∈ R.

Then ⟨·, ·⟩A⋊rG defines an A⋊r G valued inner product on

F0(A) := R·L1∆(G ,A) with a·φ =

∫
G
δ(g)−1/2αg (ξφ(g

−1)) dg .

Moreover, for ξ, η ∈ F0(A) let

AG ⟨ξ, η⟩ :=
∫ str

G
αg (ξη

∗) ∈ M(A)G .

Let AG := AG ⟨F0(A),F0(A)⟩ ⊆ M(A)G . Then F(A) := F0(A)
becomes a

AG − ⟨F(A),F(A)⟩A⋊rG ⊆ A⋊r G

equivalence bimodule.
α : G ↷ A is called saturated, if ⟨·, ·⟩A⋊rG is full!
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Some questions about generalized fixed-point algebras

Definition (Rieffel ’90) The algebra AG is called a generalized
fixed-point algebra for the proper action α : G ↷ A.

Questions

1. Given a proper action α : G ↷ A. Is AG uniquely defined?
Answer (Meyer and Buss-E): No! In general AG does depend
on R ⊆ A!

2. (Rieffel) Is there an analogous theory for maximal crossed
products, i.e., an equivalence

AG
max − ⟨F(A),F(A)⟩A⋊maxG ⊆ A⋊max G ?

Answer: Not clear in general, but for a large class of
examples, such theory exists!

3. What are the examples?
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Weak X ⋊ G -algebras
Definition(Buss-E ’13) Suppose G ↷ X is proper. A G -C ∗-algebra
(A,G , α) is called weak X ⋊ G -algebra if ∃ a G -equivariant,
nondegenerate (i.e., ϕ(C0(X ))A = A) ∗-homomorphism ϕ : C0(X ) → M(A).

(Recall: If ϕ(C0(X )) ⊆ ZM(A), then (A, α) is an X ⋊ G -algebra!)

Then: ϕ⋊µ G : C0(X )⋊ G → M(A⋊µ G ), ⋊µ = ⋊r ,⋊max or
other exotic crossed products...

Let Fc(A) := ϕ(Cc(X ))A. For ξ = ϕ(f )a, η = ϕ(h)b ∈ Fc(A) we
get

⟨ξ, η⟩(g) = ∆(g)−1/2(ϕ(f ) · a)∗αg (ϕ(h) · b) = a∗
(
∆(g)−1/2ϕ(f τg (h))

)
b

= a∗
[
ϕ⋊µ G

(
⟨f , h⟩C0(X )⋊G

)]
b

In particular, ⟨ξ, ξ⟩ = a∗
[
ϕ⋊µ G

(
⟨f , f ⟩C0(X )⋊G

)]
a ≥ 0 in

M(A⋊µ G )!

Thus (Fc(A), ⟨·, ·⟩) completes to a A⋊µ G -Hilbert module
(Fµ(A), ⟨·, ·⟩A⋊µG ) for every crossed-product norm ∥ · ∥µ on
Cc(G ,A)! If G ↷ X is free, then ⟨·, ·⟩A⋊µG is full.
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The fixed-point algebras

Let α : G ↷ A be a weak X ⋊ G -algebra, Ac := Cc(X )ACc(X ).
We define the fixed-point algebra with compact supports as

AG
c := Cc(G\X )·{m ∈ M(A)G : f ·m,m·f ∈ Ac}·Cc(G\X ) ⊆ M(A)G .

Then AG
c acts on the left of Fc(A) via m · ξ = mξ ∈ M(A) and

there is a compatible AG
c -valued inner product

AG
c
⟨ξ, η⟩ =

∫ str

G
αg (ξη

∗) dg s.t. AG
c
⟨ξ, η⟩ζ = ξ⟨η, ζ⟩Cc (G ,A)

Therefore the left action induces a ∗-homomorphism
Ψ : AG

c → K(Fµ(A)) with dense image.

Definition (Buss-E) Let ∥ · ∥µ be a crossed-product norm on

Cc(G ,A). Then we call AG
µ := Ψ(AG

c ) = K(Fµ(A)) the
µ-generalized fixed-point algebra for the weak X ⋊ G -algebra
(A, α). We get AG

µ ∼M ⟨Fµ(A),Fµ(A)⟩ ⊆ A⋊µ G .
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there is a compatible AG
c -valued inner product

AG
c
⟨ξ, η⟩ =

∫ str

G
αg (ξη

∗) dg s.t. AG
c
⟨ξ, η⟩ζ = ξ⟨η, ζ⟩Cc (G ,A)

Therefore the left action induces a ∗-homomorphism
Ψ : AG

c → K(Fµ(A)) with dense image.

Definition (Buss-E) Let ∥ · ∥µ be a crossed-product norm on

Cc(G ,A). Then we call AG
µ := Ψ(AG

c ) = K(Fµ(A)) the
µ-generalized fixed-point algebra for the weak X ⋊ G -algebra
(A, α). We get AG

µ ∼M ⟨Fµ(A),Fµ(A)⟩ ⊆ A⋊µ G .



The case X = G and Landstad duality for coactions

In what follows we equip C ∗(G ) with the comultiplication
δG : C ∗(G ) → M(C ∗(G )⊗ C ∗(G )); g 7→ g ⊗ g .

Recall A coaction of G on B is a ∗-hom. δ : B → M(B ⊗ C ∗(G ))
such that

(idB ⊗δG )◦δ = (δ⊗ idG )◦δ and δ(B)(1⊗C ∗(G )) = B⊗C ∗(G ).

Coaction crossed product If (B, δ) is a coaction of G , then let

jB : B → M(B ⊗K(L2(G ))); jB(b) = (idB ⊗λ) ◦ δ(b)
jG : C0(G ) → M(B ⊗K(L2(G ))); jC0(G)(f ) = 1⊗Mf

Then B ⋊δ Ĝ := jB(B)jG (C0(G )) ⊆ M(B ⊗K(L2(G ))).

Dual action: δ̂ : G ↷ B ⋊δ Ĝ ; δ̂g
(
jB(b)jG (f )

)
= jB(b)jG (σg (f ))

with σ : G ↷ C0(G ) :
(
σg (f )

)
(h) = f (hg).

Thus: (B ⋊δ Ĝ , δ̂, ϕ = jC0(G)) is a weak G ⋊ G -algebra!
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Then B ⋊δ Ĝ := jB(B)jG (C0(G )) ⊆ M(B ⊗K(L2(G ))).

Dual action: δ̂ : G ↷ B ⋊δ Ĝ ; δ̂g
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Dual coactions and duality theorems
Let α : G ↷ A be an action and let ⋊µ = ⋊r or ⋊max (or any
‘suitable’ intermediate crossed product). The dual coaction

α̂µ : A⋊µ G → M(A⋊µ G ⊗ C ∗(G ))

is given by A ∋ a 7→ iA(a)⊗ 1 and G ∋ g 7→ iG (g)⊗ g
(with (iA, iG ) : (A,G ) → M(A⋊µ G ) the canonical maps).

Takesaki-Takai duality: A⋊µ G ⋊α̂µ
Ĝ ∼= A⊗K(L2(G )).

Katayama-duality: If (B, δ) is a coaction, we always have a
canonical surjection

Ψ = (jB ⋊ jG )⋊ (1⊗ ρ) : B ⋊δ Ĝ ⋊
δ̂,max

G → B ⊗K(L2(G ))

Definition (Kaliszewski-E-Quigg, ’04) δ is called maximal if Ψ is an
isomorphism and normal (or reduced), if Ψ factors through
B ⋊δ Ĝ ⋊

δ̂,r
G . In general, Ψ factor faithfully through some

intermediate crossed product B ⋊δ Ĝ ⋊
δ̂,µ

G (⇝ δ is a µ-coaction).
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δ̂,r
G .

In general, Ψ factor faithfully through some

intermediate crossed product B ⋊δ Ĝ ⋊
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Fixed-point algebras and Landstad duality
Every weak G ⋊ G -alg. (A, α, ϕ) is of the form (B ⋊δ Ĝ , δ̂, jC0(G))!

Theorem (Buss, E. (2014)): Let (A, α, ϕ) be as above. For every
intermediate duality crossed-product A⋊µ G there exists a (unique
up to isom.) µ-coaction (Bµ, δµ) such that

(A, α, ϕ) ∼= (Bµ ⋊δµ Ĝ , δ̂µ, jC0(G)).

Idea of proof Let Fµ(A) = Cc(G )A
µ
be the K(Fµ(A))− A⋊µ G

Morita equivalence. Construct a α̂µ-compatible coaction δFµ on
Fµ(A) wich then induces a coaction δAG

µ
on AG

µ
∼= K(Fµ(A)). One

then checks that (Bµ, δµ) := (AG
µ , δAG

µ
) does the job.

Corollary If (B, δ) is a coaction and (B ⋊δ Ĝ , δ̂, jC0(G)) is the (dual)
weak G ⋊ G -algebra, then there is a unique intermediate crossed
product (B ⋊δ Ĝ )⋊µ G such that (B, δ) ∼= (Bµ, δµ).

Indeed: ∃ a unique C ∗-norm ∥ · ∥µ on Cc(G ,B ⋊δ Ĝ ) such that

Ψ : B ⋊δ Ĝ ⋊max G → B ⊗K(L2(G ))

factors through an iso B ⋊δ Ĝ ⋊µ G ∼= B ⊗K(L2(G ))....
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Fixed-point algebras and Landstad duality
Every weak G ⋊ G -alg. (A, α, ϕ) is of the form (B ⋊δ Ĝ , δ̂, jC0(G))!
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Deformation a la Kasprzak, Bhowmick-Neshveyev-Sangha
Rieffel ’93 Let β : Rn ↷ B be an action and let J ∈ Mn(R) skew
symmetric. Using β, Rieffel constructs a new (deformed)
multiplication ∗J on some subalgebra S(B) ⊆ B and obtains a
deformed C ∗-algebra BJ := S(B).

Kasprzak ’09 uses Landstad duality to generalize Rieffel
deformation via actions β : Ĝ ↷ B for Ĝ the dual group of an
abelian lc group G with deformation parameter ω ∈ Z 2

ct(G ,T).

He constr. a deformed system (Bω, βω) s.t.

(Bω ⋊αω Ĝ , β̂ω) ∼= (B ⋊α Ĝ , (β̂, ω)).

Bhowmick et al: If Ĝ = Rn, ω(x , y) := e i2π⟨Jx ,y⟩, then Bω = BJ !

Yamashita ’11 (G discrete), Bhowmick-Neshveyev-Sangha ’13
Extend this deformation procedure to possibly non-abelian groups
by replacing actions (B, β) of Ĝ by normal coactions (B, δ) of G
and possibly non-continuous Borel-cocycles ω ∈ Z 2(G ,T)!

If G sat. Baum-Connes, ω1 ∼h ω2, then K∗(B
ω1) ∼= K∗(B

ω2).
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Deformation via coactions
Idea for cont. cocycles: Let δ : B → M(B ⊗ C ∗(G )) be a normal
coaction, and ω : G × G → T cont. with

∀s, t, r ∈ G : ω(s, t)ω(st, r) = ω(s, tr)ω(t, r).

Let (B ⋊δ Ĝ , δ̂, ϕ := jC0(G)) be the dual weak G ⋊ G -algebra).

Let u : G → UM(B ⋊δ Ĝ ) : u(g) := ϕ(ω(g , ·)). Then

ugh = ω(g , h)ugαg (uh) ∀g , h ∈ G =⇒ δ̂ω := Ad u ◦ δ̂

is a new (ω-twisted) action on B ⋊δ Ĝ s.t. (B ⋊δ Ĝ , δ̂ω, ϕ) is still a
weak G ⋊ G -algebra.

Define (Bω, δω) := ((B ⋊δ Ĝ )G ,δ̂ω
r , δωr ). Then

(Bω ⋊δω Ĝ , δ̂ω) = (B ⋊δ Ĝ , δ̂ω)

is the ω-deformed coaction of the normal coaction (B, δ).
The case of Borel cocycles is much more technical!
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weak G ⋊ G -algebra.

Define (Bω, δω) := ((B ⋊δ Ĝ )G ,δ̂ω
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B ⋊δ Ĝ ⋊µ G ∼= B ⊗K(L2(G ))

As before, if ω ∈ Z 2
ct(G ,T), we obtain a deformed action

δ̂ω : G ↷ B ⋊δ Ĝ .
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Some results
• The above procedure extends the BNS-deformation to
µ-coactions for correspondence crossed-product functors ⋊µ!

• If G is K -amenable and satisfies Baum-Connes, we also get

ω1 ∼h ω2 ⇒ K∗(B
ω1) ∼= K∗(B

ω2).

• If jC0(G) : C0(G ) → M(B ⋊δ Ĝ ) extends to L∞(G ), then we
always have

Bω ⋊δω Ĝ ∼= Aω ∼= A = B ⋊δ ĜAω = A

This holds for all dual coctions (even for Fell bundles).

• The twisted system
(
B ⋊δ G , (δ̂, ω)

)
always stabilizes to

(B ⋊δ G ⊗K, β̂ ⊗ Ad ρω) with K := K(L2(G )). Hence

(Bω ⋊δω Ĝ , δ̂ω) ∼M

(
B ⋊δ G ⊗K, β̂ ⊗ Ad ρω

)
.

• Via H2(G ,T) ∼= BrG (K); [ω] 7→ [Ad ρω] we obtain an
(equivalent!) deformation via actions γ : G ↷ K!

• Deformation via actions on K behaves well w.r.t continuous
fields of actions X ∋ x 7→ γx : G ↷ K!
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• If jC0(G) : C0(G ) → M(B ⋊δ Ĝ ) extends to L∞(G ), then we
always have
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This holds for all dual coctions (even for Fell bundles).

• The twisted system
(
B ⋊δ G , (δ̂, ω)

)
always stabilizes to

(B ⋊δ G ⊗K, β̂ ⊗ Ad ρω) with K := K(L2(G )). Hence
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• If jC0(G) : C0(G ) → M(B ⋊δ Ĝ ) extends to L∞(G ), then we
always have
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Continuity

By a continuous family of actions X ∋ x 7→ γx : G ↷ K we
understand a C0(X )-linear action γ : G ↷ C0(X ,K), which
induces actions γx : G ↷ K on the fibres.

Theorem (Buss-E ’23) Let γ : G ↷ C0(X ,K) be as above and let
δ : B → M(B ⊗ C ∗(G )) be a µ-coaction for some correspondence
cp functor ⋊µ.

Then our constructions yield a field of C ∗-algebras
{Bγ : qx : Bγ

µ → Bγx
µ } together with a C0(X )-linear Morita

equivalence

Bγ ∼M

(
(B ⋊δ Ĝ )⊗ C0(X ,K))⋊

δ̂⊗γ,µ
G .

Thus Bγ has the same continuity properties as the crossed product!



Examples

Fell-bundles Suppose that A := ∪̇{Ag : g ∈ G} is a (continuous)
Fell-bundle over G . There is a multiplication and involution

· : A×A → A, ∗ : A → A

which induce a ∗-algebra structure on Cc(A).

For f ∈ Cc(A) let

∥f ∥max := sup{∥π(f )∥ : π : Cc(A) → B(H) is L1-cont. ∗-rep.}

Then C ∗
max(A) := Cc(A)

∥·∥max
.

Moreover, for any corresp. cp functor there exists

C ∗
µ(A) := Cc(A)

∥·∥µ
. They carry coactions

δ : C ∗
µ(A) → M(C ∗

µ(A)⊗ C ∗(G ));Ag ∋ ag 7→ ag ⊗ g

For ω ∈ Z 2(G ,T) we can ‘twist’ multiplication on A by ω to
obtain a new Fell-bundle Aω. Then (C ∗

µ(A)ω, δω) = (C ∗
µ(Aω), δω)

This covers all examples if G is discrete! (Makoto Yamashita).
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Examples

Let G = R2 ⋊ SL(2,R) then for each θ ∈ R there is a canonical
cocycle ωθ ∈ Z 2(R,T) given by

ωθ

(
( x1x2 ) , (

y1
y2 )

)
= eπθ(x1y2−x2y1)

This cocycle is invariant under the action of SL(2,R) on R2, hence
ωθ extends to a 2-cocycle ω̃θ on G = R2 ⋊ SL(2,R).

So for any µ-coaction δ : B → M(B ⊗ C ∗(G )) (with ⋊µ a
correspondence cp functor) we obtain deformations

(Bθ, δθ) := (B ω̃θ
µ , δω̃θ

µ ), θ ∈ R

which are all KK -equivalent.
If we start with a normal coaction, this gives a continuous field of
deformed algebras over R!
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Examples

Let G = PSL(2,R). Then H2(G ,T) ∼= T.

So, given a µ-coaction δ : B → M(B ⊗ C ∗(G )) for a
correspondence c.p. functor ⋊µ, we obtain a family of deformed
coactions (Bz

µ, δ
z
µ), z ∈ T.

Note In case B = C with trivial coaction, we obtain the twisted
group algebras Bz

µ = C ∗
µ(G , ωz).

Fact: For z = −1 one can show that C ∗
max(G , ω−1) = C ∗

r (G , ω−1).
This follows from the fact that the representations of these
algebras correspond to the unitary reps of SL(2,R) which restrict
to the non-trivial character of the center Z2 = Z (SL(2,R)).

Thus the deformation via ⋊max deforms C ∗
max(G ) to C ∗

max(G , ω−1)
and deformations via ⋊r deforms C ∗

r (G ) to
C ∗
r (G , ω−1) = C ∗

max(G , ω−1).
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