Proper actions, fixed-point algebras, and deformation via coactions

Siegfried Echterhoff joint with Alcides Buss

University of Münster

Quantum Groups Seminar, December 4, 2023

Recall: A group action $G \cap X$ is proper iff

 $\forall K, W \subseteq X \text{ compact} : \{g \in G : gK \cap W\} \text{ is compact.}$

Recall: A group action $G \curvearrowright X$ is proper iff

 $\forall K, W \subseteq X \text{ compact} : \{g \in G : gK \cap W\} \text{ is compact.}$

Then: Define a $C_c(G, C_0(X)) \subseteq C_0(X) \rtimes G$ -inner product on $C_c(X)$ by

$$\langle \xi, \eta \rangle (g, x) := \Delta(g)^{-1/2} \overline{\xi(x)} \eta(g^{-1}x).$$

Recall: A group action $G \curvearrowright X$ is proper iff

 $\forall K, W \subseteq X \text{ compact} : \{g \in G : gK \cap W\} \text{ is compact.}$

Then: Define a $C_c(G, C_0(X)) \subseteq C_0(X) \rtimes G$ -inner product on $C_c(X)$ by

$$\langle \xi, \eta \rangle (g, x) := \Delta(g)^{-1/2} \overline{\xi(x)} \eta(g^{-1}x).$$

Thus $C_c(X)$ completes to a $C_0(X) \rtimes G$ -Hilbertmodule $\mathcal{F}(X)$. It is full, iff $G \curvearrowright X$ is free, i.e., if $gx = x \Rightarrow g = e \ \forall (g, x)$.

Recall: A group action $G \curvearrowright X$ is proper iff

 $\forall K, W \subseteq X \text{ compact} : \{g \in G : gK \cap W\} \text{ is compact.}$

Then: Define a $C_c(G, C_0(X)) \subseteq C_0(X) \rtimes G$ -inner product on $C_c(X)$ by

$$\langle \xi, \eta \rangle (g, x) := \Delta(g)^{-1/2} \overline{\xi(x)} \eta(g^{-1}x).$$

Thus $C_c(X)$ completes to a $C_0(X) \rtimes G$ -Hilbertmodule $\mathcal{F}(X)$. It is full, iff $G \curvearrowright X$ is free, i.e., if $gx = x \Rightarrow g = e \ \forall (g, x)$.

We get

$$C_0(G \setminus X) \cong \mathcal{K}(\mathcal{F}(X))$$
 via $(f \cdot \xi)(x) = f(Gx)\xi(x)$.

Therefore $\mathcal{F}(X)$ becomes a

$$C_0(G \setminus X) - \overline{\langle \mathcal{F}(X), \mathcal{F}(X) \rangle} \subseteq C_0(X) \rtimes G$$

equivalence bimodule.

Now let $\alpha: G \curvearrowright A$. Let $L^1_{\Delta}(G, A) = \Delta^{1/2}L^1(G, A) \cap L^1(G, A)$. α is Rieffel proper iff there exists a dense subspace $\mathcal{R} \subseteq A$ s.t.

$$\langle \xi, \eta \rangle_{A \rtimes_r G} := [g \mapsto \Delta(g)^{-1/2} \xi^* \alpha_g(\eta)] \in L^1_{\Delta}(G, A) \quad \forall \xi, \eta \in \mathcal{R}.$$

Now let $\alpha: G \curvearrowright A$. Let $L^1_{\Delta}(G, A) = \Delta^{1/2}L^1(G, A) \cap L^1(G, A)$. α is Rieffel proper iff there exists a dense subspace $\mathcal{R} \subseteq A$ s.t.

$$\langle \xi, \eta \rangle_{A \rtimes_r G} := [g \mapsto \Delta(g)^{-1/2} \xi^* \alpha_g(\eta)] \in L^1_\Delta(G, A) \quad \forall \xi, \eta \in \mathcal{R}.$$

Then $\langle \cdot, \cdot \rangle_{A \rtimes_r G}$ defines an $A \rtimes_r G$ valued inner product on

$$\mathcal{F}_0(A) := \mathcal{R} \cdot L^1_{\Delta}(G,A) \quad ext{with} \quad a \cdot \varphi = \int_G \delta(g)^{-1/2} lpha_g(\xi \varphi(g^{-1})) \, dg.$$

Now let $\alpha: G \curvearrowright A$. Let $L^1_{\Delta}(G, A) = \Delta^{1/2}L^1(G, A) \cap L^1(G, A)$. α is Rieffel proper iff there exists a dense subspace $\mathcal{R} \subseteq A$ s.t.

$$\langle \xi, \eta \rangle_{A \rtimes_r G} := [g \mapsto \Delta(g)^{-1/2} \xi^* \alpha_g(\eta)] \in L^1_\Delta(G, A) \quad \forall \xi, \eta \in \mathcal{R}.$$

Then $\langle \cdot, \cdot \rangle_{A \rtimes_r G}$ defines an $A \rtimes_r G$ valued inner product on

$$\mathcal{F}_0(A) := \mathcal{R} \cdot L^1_{\Delta}(G,A) \quad ext{with} \quad a \cdot \varphi = \int_G \delta(g)^{-1/2} lpha_g(\xi \varphi(g^{-1})) \, dg.$$

Moreover, for $\xi, \eta \in \mathcal{F}_0(A)$ let

$$_{\mathcal{A}^{\mathcal{G}}}\langle \xi, \eta \rangle := \int_{\mathcal{G}}^{\mathsf{str}} \alpha_{\mathsf{g}}(\xi \eta^{*}) \in \mathsf{M}(\mathcal{A})^{\mathsf{G}}.$$

Now let $\alpha: G \curvearrowright A$. Let $L^1_{\Delta}(G, A) = \Delta^{1/2}L^1(G, A) \cap L^1(G, A)$. α is Rieffel proper iff there exists a dense subspace $\mathcal{R} \subseteq A$ s.t.

$$\langle \xi, \eta \rangle_{\mathsf{A} \rtimes_r \mathsf{G}} := [\mathsf{g} \mapsto \Delta(\mathsf{g})^{-1/2} \xi^* \alpha_\mathsf{g}(\eta)] \in L^1_\Delta(\mathsf{G}, \mathsf{A}) \quad \forall \xi, \eta \in \mathcal{R}.$$

Then $\langle \cdot, \cdot \rangle_{A \rtimes_r G}$ defines an $A \rtimes_r G$ valued inner product on

$$\mathcal{F}_0(A) := \mathcal{R} \cdot L^1_{\Delta}(G,A) \quad \text{with} \quad a \cdot \varphi = \int_G \delta(g)^{-1/2} \alpha_g(\xi \varphi(g^{-1})) \, dg.$$

Moreover, for $\xi, \eta \in \mathcal{F}_0(A)$ let

$$_{\mathcal{A}^{\mathcal{G}}}\langle \xi, \eta \rangle := \int_{\mathcal{G}}^{\mathsf{str}} \alpha_{\mathsf{g}}(\xi \eta^*) \in \mathsf{M}(\mathcal{A})^{\mathsf{G}}.$$

Let $A^G := \overline{{}_{A^G}\langle \mathcal{F}_0(A), \mathcal{F}_0(A)\rangle} \subseteq M(A)^G$. Then $\mathcal{F}(A) := \overline{\mathcal{F}_0(A)}$ becomes a

$$A^G - \overline{\langle \mathcal{F}(A), \mathcal{F}(A) \rangle_{A \rtimes_r G}} \subseteq A \rtimes_r G$$

equivalence bimodule.

Now let $\alpha: G \curvearrowright A$. Let $L^1_{\Delta}(G, A) = \Delta^{1/2}L^1(G, A) \cap L^1(G, A)$. α is Rieffel proper iff there exists a dense subspace $\mathcal{R} \subseteq A$ s.t.

$$\langle \xi, \eta \rangle_{A \rtimes_r G} := [g \mapsto \Delta(g)^{-1/2} \xi^* \alpha_g(\eta)] \in L^1_{\Delta}(G, A) \quad \forall \xi, \eta \in \mathcal{R}.$$

Then $\langle \cdot, \cdot \rangle_{A \rtimes_r G}$ defines an $A \rtimes_r G$ valued inner product on

$$\mathcal{F}_0(A) := \mathcal{R} \cdot L^1_\Delta(G,A) \quad ext{with} \quad a \cdot \varphi = \int_G \delta(g)^{-1/2} lpha_g(\xi \varphi(g^{-1})) \, dg.$$

Moreover, for $\xi, \eta \in \mathcal{F}_0(A)$ let

$$_{\mathcal{A}^{\mathcal{G}}}\langle \xi,\eta
angle := \int_{\mathcal{G}}^{\mathsf{str}} \alpha_{\mathcal{G}}(\xi\eta^*) \in \mathit{M}(\mathcal{A})^{\mathcal{G}}.$$

Let $A^G := \overline{{}_{A^G}\langle \mathcal{F}_0(A), \mathcal{F}_0(A)\rangle} \subseteq M(A)^G$. Then $\mathcal{F}(A) := \overline{\mathcal{F}_0(A)}$ becomes a

$$A^G - \overline{\langle \mathcal{F}(A), \mathcal{F}(A) \rangle_{A \rtimes_r G}} \subseteq A \rtimes_r G$$

equivalence bimodule.

 $\alpha: G \curvearrowright A$ is called saturated, if $\langle \cdot, \cdot \rangle_{A \rtimes_r G}$ is full!

Definition (Rieffel '90) The algebra A^G is called a generalized fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Definition (Rieffel '90) The algebra A^G is called a generalized fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Questions

1. Given a proper action $\alpha: G \curvearrowright A$. Is A^G uniquely defined?

Definition (Rieffel '90) The algebra A^G is called a *generalized* fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Questions

1. Given a proper action $\alpha: G \curvearrowright A$. Is A^G uniquely defined? Answer (Meyer and Buss-E): No! In general A^G does depend on $\mathcal{R} \subseteq A$!

Definition (Rieffel '90) The algebra A^G is called a *generalized* fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Questions

- 1. Given a proper action $\alpha: G \curvearrowright A$. Is A^G uniquely defined? Answer (Meyer and Buss-E): No! In general A^G does depend on $\mathcal{R} \subseteq A$!
- 2. (Rieffel) Is there an analogous theory for maximal crossed products, i.e., an equivalence

$$A_{\mathsf{max}}^G - \overline{\langle \mathcal{F}(A), \mathcal{F}(A) \rangle_{A \rtimes_{\mathsf{max}} G}} \subseteq A \rtimes_{\mathsf{max}} G \quad ?$$

Definition (Rieffel '90) The algebra A^G is called a *generalized* fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Questions

- 1. Given a proper action $\alpha: G \curvearrowright A$. Is A^G uniquely defined? Answer (Meyer and Buss-E): No! In general A^G does depend on $\mathcal{R} \subseteq A$!
- 2. (Rieffel) Is there an analogous theory for maximal crossed products, i.e., an equivalence

$$A_{\max}^G - \overline{\langle \mathcal{F}(A), \mathcal{F}(A) \rangle_{A \rtimes_{\max} G}} \subseteq A \rtimes_{\max} G \quad ?$$

Answer: Not clear in general, but for a large class of examples, such theory exists!

Definition (Rieffel '90) The algebra A^G is called a *generalized* fixed-point algebra for the proper action $\alpha: G \curvearrowright A$.

Questions

- 1. Given a proper action $\alpha: G \curvearrowright A$. Is A^G uniquely defined? Answer (Meyer and Buss-E): No! In general A^G does depend on $\mathcal{R} \subseteq A$!
- 2. (Rieffel) Is there an analogous theory for maximal crossed products, i.e., an equivalence

$$A_{\mathsf{max}}^G - \overline{\langle \mathcal{F}(A), \mathcal{F}(A) \rangle_{A \rtimes_{\mathsf{max}} G}} \subseteq A \rtimes_{\mathsf{max}} G \quad ?$$

Answer: Not clear in general, but for a large class of examples, such theory exists!

3. What are the examples?

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G- C^* -algebra (A, G, α) is called weak $X \rtimes G$ -algebra if \exists a G-equivariant, nondegenerate (i.e., $\phi(C_0(X))A = A$) *-homomorphism $\phi : C_0(X) \to M(A)$.

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G- C^* -algebra (A, G, α) is called weak $X \bowtie G$ -algebra if \exists a G-equivariant, nondegenerate (i.e., $\phi(C_0(X))A = A$) *-homomorphism $\phi : C_0(X) \to M(A)$. (Recall: If $\phi(C_0(X)) \subseteq ZM(A)$, then (A, α) is an $X \bowtie G$ -algebra!)

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G- C^* -algebra (A, G, α) is called weak $X \rtimes G$ -algebra if \exists a G-equivariant, nondegenerate (i.e., $\phi(C_0(X))A = A$) *-homomorphism $\phi: C_0(X) \to M(A)$. (Recall: If $\phi(C_0(X)) \subseteq ZM(A)$, then (A, α) is an $X \rtimes G$ -algebra!)

Then: $\phi \rtimes_{\mu} G : C_0(X) \rtimes G \to M(A \rtimes_{\mu} G)$, $\rtimes_{\mu} = \rtimes_r, \rtimes_{\text{max}}$ or other exotic crossed products...

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G-C*-algebra (A, G, α) is called weak $X \rtimes G$ -algebra if \exists a G-equivariant, nondegenerate (i.e., $\phi(C_0(X))A = A$) *-homomorphism $\phi: C_0(X) \to M(A)$. (Recall: If $\phi(C_0(X)) \subseteq ZM(A)$, then (A, α) is an $X \rtimes G$ -algebra!)

Then: $\phi \rtimes_{\mu} G : C_0(X) \rtimes G \to M(A \rtimes_{\mu} G)$, $\rtimes_{\mu} = \rtimes_r, \rtimes_{\mathsf{max}}$ or other exotic crossed products...

Let $\mathcal{F}_c(A) := \phi(C_c(X))A$. For $\xi = \phi(f)a, \eta = \phi(h)b \in \mathcal{F}_c(A)$ we get

$$\begin{split} \langle \xi, \eta \rangle (g) &= \Delta(g)^{-1/2} (\phi(f) \cdot a)^* \alpha_g(\phi(h) \cdot b) = a^* \left(\Delta(g)^{-1/2} \phi(\overline{f} \tau_g(h)) \right) b \\ &= a^* \left[\phi \rtimes_{\mu} G \left(\langle f, h \rangle_{C_0(X) \rtimes G} \right) \right] b \end{split}$$

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G-C*-algebra (A, G, α) is called weak $X \rtimes G$ -algebra if \exists a G-equivariant, nondegenerate $(i.e., \phi(C_0(X))A = A)$ *-homomorphism $\phi: C_0(X) \to M(A)$. (Recall: If $\phi(C_0(X)) \subseteq ZM(A)$, then (A, α) is an $X \rtimes G$ -algebra!)

Then: $\phi \rtimes_{\mu} G : C_0(X) \rtimes G \to M(A \rtimes_{\mu} G)$, $\rtimes_{\mu} = \rtimes_r, \rtimes_{\mathsf{max}}$ or other exotic crossed products...

Let $\mathcal{F}_c(A) := \phi(C_c(X))A$. For $\xi = \phi(f)a, \eta = \phi(h)b \in \mathcal{F}_c(A)$ we get

$$\langle \xi, \eta \rangle (g) = \Delta(g)^{-1/2} (\phi(f) \cdot a)^* \alpha_g(\phi(h) \cdot b) = a^* (\Delta(g)^{-1/2} \phi(\overline{f} \tau_g(h))) b$$

= $a^* [\phi \bowtie_{\mu} G(\langle f, h \rangle_{C_0(X) \bowtie G})] b$

In particular, $\langle \xi, \xi \rangle = a^* \left[\phi \rtimes_{\mu} G \left(\langle f, f \rangle_{C_0(X) \rtimes G} \right) \right] a \geq 0$ in $M(A \rtimes_{\mu} G)!$

Definition(Buss-E '13) Suppose $G \curvearrowright X$ is proper. A G-C*-algebra (A, G, α) is called weak $X \rtimes G$ -algebra if \exists a G-equivariant, nondegenerate (i.e., $\phi(C_0(X))A = A$) *-homomorphism $\phi: C_0(X) \to M(A)$. (Recall: If $\phi(C_0(X)) \subseteq ZM(A)$, then (A, α) is an $X \rtimes G$ -algebra!)

Then: $\phi \rtimes_{\mu} G : C_0(X) \rtimes G \to M(A \rtimes_{\mu} G)$, $\rtimes_{\mu} = \rtimes_r, \rtimes_{\text{max}}$ or other exotic crossed products...

Let $\mathcal{F}_c(A) := \phi(C_c(X))A$. For $\xi = \phi(f)a, \eta = \phi(h)b \in \mathcal{F}_c(A)$ we get

$$\langle \xi, \eta \rangle (g) = \Delta(g)^{-1/2} (\phi(f) \cdot a)^* \alpha_g(\phi(h) \cdot b) = a^* (\Delta(g)^{-1/2} \phi(\overline{f} \tau_g(h))) b$$

= $a^* [\phi \rtimes_{\mu} G(\langle f, h \rangle_{C_0(X) \rtimes G})] b$

In particular, $\langle \xi, \xi \rangle = a^* \left[\phi \rtimes_{\mu} G \left(\langle f, f \rangle_{C_0(X) \rtimes G} \right) \right] a \geq 0$ in $M(A \rtimes_{\mu} G)!$

Thus $(\mathcal{F}_c(A), \langle \cdot, \cdot \rangle)$ completes to a $A \rtimes_{\mu} G$ -Hilbert module $(\mathcal{F}_{\mu}(A), \langle \cdot, \cdot \rangle_{A \rtimes_{\mu} G})$ for every crossed-product norm $\| \cdot \|_{\mu}$ on $C_c(G, A)!$ If $G \curvearrowright X$ is free, then $\langle \cdot, \cdot \rangle_{A \rtimes_{\mu} G}$ is full.

The fixed-point algebras

Let $\alpha: G \curvearrowright A$ be a weak $X \rtimes G$ -algebra, $A_c := C_c(X)AC_c(X)$. We define the fixed-point algebra with compact supports as

$$A_c^G := C_c(G \backslash X) \cdot \{m \in M(A)^G : f \cdot m, m \cdot f \in A_c\} \cdot C_c(G \backslash X) \subseteq M(A)^G.$$

The fixed-point algebras

Let $\alpha: G \curvearrowright A$ be a weak $X \rtimes G$ -algebra, $A_c := C_c(X)AC_c(X)$. We define the fixed-point algebra with compact supports as

$$A_c^G := C_c(G \backslash X) \cdot \{m \in M(A)^G : f \cdot m, m \cdot f \in A_c\} \cdot C_c(G \backslash X) \subseteq M(A)^G.$$

Then A_c^G acts on the left of $\mathcal{F}_c(A)$ via $m \cdot \xi = m\xi \in M(A)$ and there is a compatible A_c^G -valued inner product

$$A_c^G\langle \xi, \eta \rangle = \int_G^{str} \alpha_g(\xi \eta^*) \, dg$$
 s.t. $A_c^G\langle \xi, \eta \rangle \zeta = \xi \langle \eta, \zeta \rangle_{C_c(G, A)}$

Therefore the left action induces a *-homomorphism $\Psi: A_c^G \to \mathcal{K}(\mathcal{F}_\mu(A))$ with dense image.

The fixed-point algebras

Let $\alpha: G \curvearrowright A$ be a weak $X \rtimes G$ -algebra, $A_c := C_c(X)AC_c(X)$. We define the fixed-point algebra with compact supports as

$$A_c^G := C_c(G \setminus X) \cdot \{m \in M(A)^G : f \cdot m, m \cdot f \in A_c\} \cdot C_c(G \setminus X) \subseteq M(A)^G.$$

Then A_c^G acts on the left of $\mathcal{F}_c(A)$ via $m \cdot \xi = m\xi \in M(A)$ and there is a compatible A_c^G -valued inner product

$$A_c^G \langle \xi, \eta \rangle = \int_G^{\text{str}} \alpha_g(\xi \eta^*) \, dg$$
 s.t. $A_c^G \langle \xi, \eta \rangle \zeta = \xi \langle \eta, \zeta \rangle_{C_c(G, A)}$

Therefore the left action induces a *-homomorphism $\Psi: A_c^G \to \mathcal{K}(\mathcal{F}_\mu(A))$ with dense image.

Definition (Buss-E) Let $\|\cdot\|_{\mu}$ be a crossed-product norm on $C_c(G,A)$. Then we call $A_{\mu}^G:=\overline{\Psi(A_c^G)}=\mathcal{K}(\mathcal{F}_{\mu}(A))$ the μ -generalized fixed-point algebra for the weak $X\rtimes G$ -algebra (A,α) . We get $A_{\mu}^G\sim_M\overline{\langle\mathcal{F}_{\mu}(A),\mathcal{F}_{\mu}(A)\rangle}\subseteq A\rtimes_{\mu}G$.

In what follows we equip $C^*(G)$ with the comultiplication $\delta_G: C^*(G) \to M(C^*(G) \otimes C^*(G)); g \mapsto g \otimes g$.

Recall A coaction of G on B is a *-hom. $\delta: B \to M(B \otimes C^*(G))$ such that

$$(\operatorname{id}_B \otimes \delta_G) \circ \delta = (\delta \otimes \operatorname{id}_G) \circ \delta$$
 and $\delta(B)(1 \otimes C^*(G)) = B \otimes C^*(G)$.

In what follows we equip $C^*(G)$ with the comultiplication $\delta_G: C^*(G) \to M(C^*(G) \otimes C^*(G)); g \mapsto g \otimes g$.

Recall A coaction of G on B is a *-hom. $\delta: B \to M(B \otimes C^*(G))$ such that

$$(\operatorname{id}_B \otimes \delta_G) \circ \delta = (\delta \otimes \operatorname{id}_G) \circ \delta \quad \text{and} \quad \delta(B)(1 \otimes C^*(G)) = B \otimes C^*(G).$$

Coaction crossed product If (B, δ) is a coaction of G, then let

$$j_B: B \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_B(b) = (\mathrm{id}_B \otimes \lambda) \circ \delta(b)$$

 $j_G: C_0(G) \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_{C_0(G)}(f) = 1 \otimes M_f$

Then
$$B \rtimes_{\delta} \widehat{G} := \overline{j_B(B)j_G(C_0(G))} \subseteq M(B \otimes \mathcal{K}(L^2(G))).$$

In what follows we equip $C^*(G)$ with the comultiplication $\delta_G: C^*(G) \to M(C^*(G) \otimes C^*(G)); g \mapsto g \otimes g$.

Recall A coaction of G on B is a *-hom. $\delta: B \to M(B \otimes C^*(G))$ such that

$$(\operatorname{id}_B\otimes \delta_G)\circ \delta=(\delta\otimes\operatorname{id}_G)\circ \delta\quad\text{and}\quad \delta(B)(1\otimes C^*(G))=B\otimes C^*(G).$$

Coaction crossed product If (B, δ) is a coaction of G, then let

$$j_B: B \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_B(b) = (\mathrm{id}_B \otimes \lambda) \circ \delta(b)$$

 $j_G: C_0(G) \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_{C_0(G)}(f) = 1 \otimes M_f$

Then
$$B \rtimes_{\delta} \widehat{G} := \overline{j_B(B)j_G(C_0(G))} \subseteq M(B \otimes \mathcal{K}(L^2(G))).$$

Dual action:
$$\hat{\delta}: G \curvearrowright B \rtimes_{\delta} \hat{G}$$
; $\hat{\delta}_{g}(j_{B}(b)j_{G}(f)) = j_{B}(b)j_{G}(\sigma_{g}(f))$ with $\sigma: G \curvearrowright C_{0}(G): (\sigma_{g}(f))(h) = f(hg)$.

In what follows we equip $C^*(G)$ with the comultiplication $\delta_G: C^*(G) \to M(C^*(G) \otimes C^*(G)); g \mapsto g \otimes g$.

Recall A coaction of G on B is a *-hom. $\delta: B \to M(B \otimes C^*(G))$ such that

$$(\operatorname{id}_B\otimes \delta_G)\circ \delta=(\delta\otimes\operatorname{id}_G)\circ \delta\quad\text{and}\quad \delta(B)(1\otimes C^*(G))=B\otimes C^*(G).$$

Coaction crossed product If (B, δ) is a coaction of G, then let

$$j_B: B \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_B(b) = (\mathrm{id}_B \otimes \lambda) \circ \delta(b)$$

 $j_G: C_0(G) \to M(B \otimes \mathcal{K}(L^2(G))); \quad j_{C_0(G)}(f) = 1 \otimes M_f$

Then
$$B \rtimes_{\delta} \widehat{G} := \overline{j_B(B)j_G(C_0(G))} \subseteq M(B \otimes \mathcal{K}(L^2(G))).$$

Dual action: $\hat{\delta}: G \curvearrowright B \rtimes_{\delta} \hat{G}$; $\hat{\delta}_{g}(j_{B}(b)j_{G}(f)) = j_{B}(b)j_{G}(\sigma_{g}(f))$ with $\sigma: G \curvearrowright C_{0}(G): (\sigma_{g}(f))(h) = f(hg)$.

Thus: $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, \phi = j_{C_0(G)})$ is a weak $G \rtimes G$ -algebra!

Let $\alpha: G \curvearrowright A$ be an action and let $\rtimes_{\mu} = \rtimes_r$ or \rtimes_{max} (or any 'suitable' intermediate crossed product). The dual coaction

$$\widehat{\alpha}_{\mu}: A \rtimes_{\mu} G \to M(A \rtimes_{\mu} G \otimes C^{*}(G))$$

is given by $A \ni a \mapsto i_A(a) \otimes 1$ and $G \ni g \mapsto i_G(g) \otimes g$ (with $(i_A, i_G) : (A, G) \to M(A \rtimes_{\mu} G)$ the canonical maps).

Takesaki-Takai duality: $A \rtimes_{\mu} G \rtimes_{\widehat{\alpha}_{\mu}} \widehat{G} \cong A \otimes \mathcal{K}(L^{2}(G)).$

Let $\alpha: G \curvearrowright A$ be an action and let $\rtimes_{\mu} = \rtimes_r$ or \rtimes_{max} (or any 'suitable' intermediate crossed product). The dual coaction

$$\widehat{\alpha}_{\mu}: A \rtimes_{\mu} G \to M(A \rtimes_{\mu} G \otimes C^{*}(G))$$

is given by $A \ni a \mapsto i_A(a) \otimes 1$ and $G \ni g \mapsto i_G(g) \otimes g$ (with $(i_A, i_G) : (A, G) \to M(A \rtimes_{\mu} G)$ the canonical maps).

Takesaki-Takai duality: $A \rtimes_{\mu} G \rtimes_{\widehat{\alpha}_{\mu}} \widehat{G} \cong A \otimes \mathcal{K}(L^{2}(G)).$

Katayama-duality: If (B, δ) is a coaction, we always have a canonical surjection

$$\Psi = (j_B \rtimes j_G) \rtimes (1 \otimes \rho) : B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta}, \mathsf{max}} G \to B \otimes \mathcal{K}(L^2(G))$$

Let $\alpha: G \curvearrowright A$ be an action and let $\rtimes_{\mu} = \rtimes_r$ or \rtimes_{max} (or any 'suitable' intermediate crossed product). The dual coaction

$$\widehat{\alpha}_{\mu}: A \rtimes_{\mu} G \to M(A \rtimes_{\mu} G \otimes C^{*}(G))$$

is given by $A \ni a \mapsto i_A(a) \otimes 1$ and $G \ni g \mapsto i_G(g) \otimes g$ (with $(i_A, i_G) : (A, G) \to M(A \rtimes_{\mu} G)$ the canonical maps).

Takesaki-Takai duality: $A \rtimes_{\mu} G \rtimes_{\widehat{\alpha}_{\mu}} \widehat{G} \cong A \otimes \mathcal{K}(L^{2}(G))$.

Katayama-duality: If (B, δ) is a coaction, we always have a canonical surjection

$$\Psi = (j_B \rtimes j_G) \rtimes (1 \otimes \rho) : B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta}, \mathsf{max}} G \to B \otimes \mathcal{K}(L^2(G))$$

Definition (Kaliszewski-E-Quigg, '04) δ is called maximal if Ψ is an isomorphism and normal (or reduced), if Ψ factors through $B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta}_r} G$.

Let $\alpha: G \curvearrowright A$ be an action and let $\rtimes_{\mu} = \rtimes_r$ or \rtimes_{max} (or any 'suitable' intermediate crossed product). The dual coaction

$$\widehat{\alpha}_{\mu}: A \rtimes_{\mu} G \to M(A \rtimes_{\mu} G \otimes C^{*}(G))$$

is given by $A \ni a \mapsto i_A(a) \otimes 1$ and $G \ni g \mapsto i_G(g) \otimes g$ (with $(i_A, i_G) : (A, G) \to M(A \rtimes_{\mu} G)$ the canonical maps).

Takesaki-Takai duality: $A \rtimes_{\mu} G \rtimes_{\widehat{\alpha}_{\mu}} \widehat{G} \cong A \otimes \mathcal{K}(L^{2}(G)).$

Katayama-duality: If (B, δ) is a coaction, we always have a canonical surjection

$$\Psi = (j_B \rtimes j_G) \rtimes (1 \otimes \rho) : B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta}, \mathsf{max}} G \to B \otimes \mathcal{K}(L^2(G))$$

Definition (Kaliszewski-E-Quigg, '04) δ is called maximal if Ψ is an isomorphism and normal (or reduced), if Ψ factors through $B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta},r} G$. In general, Ψ factor faithfully through some intermediate crossed product $B \rtimes_{\delta} \widehat{G} \rtimes_{\widehat{\delta},\mu} G (\rightsquigarrow_{\delta} \delta \text{ is a } \mu\text{-coaction})$.

Fixed-point algebras and Landstad duality

Every weak $G \rtimes G$ -alg. (A, α, ϕ) is of the form $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})!$

Theorem (Buss, E. (2014)): Let (A,α,ϕ) be as above. For every intermediate duality crossed-product $A\rtimes_{\mu}G$ there exists a (unique up to isom.) μ -coaction (B_{μ},δ_{μ}) such that

$$(A, \alpha, \phi) \cong (B_{\mu} \rtimes_{\delta_{\mu}} \widehat{G}, \widehat{\delta_{\mu}}, j_{C_0(G)}).$$

Fixed-point algebras and Landstad duality

Every weak $G \rtimes G$ -alg. (A, α, ϕ) is of the form $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})!$

Theorem (Buss, E. (2014)): Let (A,α,ϕ) be as above. For every intermediate duality crossed-product $A\rtimes_{\mu}G$ there exists a (unique up to isom.) μ -coaction (B_{μ},δ_{μ}) such that

$$(A, \alpha, \phi) \cong (B_{\mu} \rtimes_{\delta_{\mu}} \widehat{G}, \widehat{\delta_{\mu}}, j_{C_0(G)}).$$

Idea of proof Let $\mathcal{F}_{\mu}(A) = \overline{C_{c}(G)A}^{\mu}$ be the $\mathcal{K}(\mathcal{F}_{\mu}(A)) - A \rtimes_{\mu} G$ Morita equivalence. Construct a $\widehat{\alpha_{\mu}}$ -compatible coaction $\delta_{\mathcal{F}_{\mu}}$ on $\mathcal{F}_{\mu}(A)$ wich then induces a coaction $\delta_{A_{\mu}^{G}}$ on $A_{\mu}^{G} \cong \mathcal{K}(\mathcal{F}_{\mu}(A))$. One then checks that $(B_{\mu}, \delta_{\mu}) := (A_{\mu}^{G}, \delta_{A_{\mu}^{G}})$ does the job.

Fixed-point algebras and Landstad duality

Every weak $G \rtimes G$ -alg. (A, α, ϕ) is of the form $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})!$

Theorem (Buss, E. (2014)): Let (A, α, ϕ) be as above. For every intermediate duality crossed-product $A \rtimes_{\mu} G$ there exists a (unique up to isom.) μ -coaction (B_{μ}, δ_{μ}) such that

$$(A, \alpha, \phi) \cong (B_{\mu} \rtimes_{\delta_{\mu}} \widehat{G}, \widehat{\delta_{\mu}}, j_{C_0(G)}).$$

Idea of proof Let $\mathcal{F}_{\mu}(A) = \overline{C_{c}(G)A}^{\mu}$ be the $\mathcal{K}(\mathcal{F}_{\mu}(A)) - A \rtimes_{\mu} G$ Morita equivalence. Construct a $\widehat{\alpha_{\mu}}$ -compatible coaction $\delta_{\mathcal{F}_{\mu}}$ on $\mathcal{F}_{\mu}(A)$ wich then induces a coaction $\delta_{A_{\mu}^{G}}$ on $A_{\mu}^{G} \cong \mathcal{K}(\mathcal{F}_{\mu}(A))$. One then checks that $(B_{\mu}, \delta_{\mu}) := (A_{\mu}^{G}, \delta_{A_{\mu}^{G}})$ does the job.

Corollary If (B, δ) is a coaction and $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})$ is the (dual) weak $G \rtimes G$ -algebra, then there is a unique intermediate crossed product $(B \rtimes_{\delta} \widehat{G}) \rtimes_{\mu} G$ such that $(B, \delta) \cong (B_{\mu}, \delta_{\mu})$.

Fixed-point algebras and Landstad duality

Every weak $G \rtimes G$ -alg. (A, α, ϕ) is of the form $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})!$

Theorem (Buss, E. (2014)): Let (A,α,ϕ) be as above. For every intermediate duality crossed-product $A\rtimes_{\mu}G$ there exists a (unique up to isom.) μ -coaction (B_{μ},δ_{μ}) such that

$$(A, \alpha, \phi) \cong (B_{\mu} \rtimes_{\delta_{\mu}} \widehat{G}, \widehat{\delta_{\mu}}, j_{C_0(G)}).$$

Idea of proof Let $\mathcal{F}_{\mu}(A) = \overline{C_{c}(G)A}^{\mu}$ be the $\mathcal{K}(\mathcal{F}_{\mu}(A)) - A \rtimes_{\mu} G$ Morita equivalence. Construct a $\widehat{\alpha_{\mu}}$ -compatible coaction $\delta_{\mathcal{F}_{\mu}}$ on $\mathcal{F}_{\mu}(A)$ wich then induces a coaction $\delta_{A_{\mu}^{G}}$ on $A_{\mu}^{G} \cong \mathcal{K}(\mathcal{F}_{\mu}(A))$. One then checks that $(B_{\mu}, \delta_{\mu}) := (A_{\mu}^{G}, \delta_{A_{\mu}^{G}})$ does the job.

Corollary If (B, δ) is a coaction and $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_{C_0(G)})$ is the (dual) weak $G \rtimes G$ -algebra, then there is a unique intermediate crossed product $(B \rtimes_{\delta} \widehat{G}) \rtimes_{\mu} G$ such that $(B, \delta) \cong (B_{\mu}, \delta_{\mu})$.

Indeed: \exists a unique C^* -norm $\|\cdot\|_{\mu}$ on $C_c(G, B \rtimes_{\delta} \widehat{G})$ such that

$$\Psi: B \rtimes_{\delta} \widehat{G} \rtimes_{\mathsf{max}} G \to B \otimes \mathcal{K}(L^2(G))$$

factors through an iso $B \rtimes_{\delta} \widehat{G} \rtimes_{\mu} G \cong B \otimes \mathcal{K}(L^{2}(G))$...

Rieffel '93 Let $\beta: \mathbb{R}^n \curvearrowright B$ be an action and let $J \in M_n(\mathbb{R})$ skew symmetric. Using β , Rieffel constructs a new (deformed) multiplication $*_J$ on some subalgebra $\mathcal{S}(B) \subseteq B$ and obtains a deformed C^* -algebra $B_J := \overline{\mathcal{S}(B)}$.

Rieffel '93 Let $\beta: \mathbb{R}^n \curvearrowright B$ be an action and let $J \in M_n(\mathbb{R})$ skew symmetric. Using β , Rieffel constructs a new (deformed) multiplication $*_J$ on some subalgebra $\mathcal{S}(B) \subseteq B$ and obtains a deformed C^* -algebra $B_J := \overline{\mathcal{S}(B)}$.

Kasprzak '09 uses Landstad duality to generalize Rieffel deformation via actions $\beta:\widehat{G}\curvearrowright B$ for \widehat{G} the dual group of an abelian Ic group G with deformation parameter $\omega\in Z^2_{ct}(G,\mathbb{T})$.

Rieffel '93 Let $\beta: \mathbb{R}^n \curvearrowright B$ be an action and let $J \in M_n(\mathbb{R})$ skew symmetric. Using β , Rieffel constructs a new (deformed) multiplication $*_J$ on some subalgebra $\mathcal{S}(B) \subseteq B$ and obtains a deformed C^* -algebra $B_J := \overline{\mathcal{S}(B)}$.

Kasprzak '09 uses Landstad duality to generalize Rieffel deformation via actions $\beta:\widehat{G}\curvearrowright B$ for \widehat{G} the dual group of an abelian Ic group G with deformation parameter $\omega\in Z^2_{ct}(G,\mathbb{T})$.

He constr. a deformed system $(B^{\omega}, \beta^{\omega})$ s.t.

$$(B^{\omega} \rtimes_{\alpha^{\omega}} \widehat{G}, \widehat{\beta^{\omega}}) \cong (B \rtimes_{\alpha} \widehat{G}, (\widehat{\beta}, \omega)).$$

Bhowmick et al: If $\widehat{G}=\mathbb{R}^n$, $\omega(x,y):=e^{i2\pi\langle Jx,y\rangle}$, then $B^\omega=B_J!$

Rieffel '93 Let $\beta: \mathbb{R}^n \curvearrowright B$ be an action and let $J \in M_n(\mathbb{R})$ skew symmetric. Using β , Rieffel constructs a new (deformed) multiplication $*_J$ on some subalgebra $\mathcal{S}(B) \subseteq B$ and obtains a deformed C^* -algebra $B_J := \overline{\mathcal{S}(B)}$.

Kasprzak '09 uses Landstad duality to generalize Rieffel deformation via actions $\beta:\widehat{G}\curvearrowright B$ for \widehat{G} the dual group of an abelian lc group G with deformation parameter $\omega\in Z^2_{ct}(G,\mathbb{T})$.

He constr. a deformed system $(B^{\omega}, \beta^{\omega})$ s.t.

$$(B^{\omega} \rtimes_{\alpha^{\omega}} \widehat{G}, \widehat{\beta^{\omega}}) \cong (B \rtimes_{\alpha} \widehat{G}, (\widehat{\beta}, \omega)).$$

Bhowmick et al: If $\widehat{G} = \mathbb{R}^n$, $\omega(x,y) := e^{i2\pi\langle Jx,y\rangle}$, then $B^{\omega} = B_J!$

Yamashita '11 (G discrete), Bhowmick-Neshveyev-Sangha '13 Extend this deformation procedure to possibly non-abelian groups by replacing actions (B,β) of \widehat{G} by normal coactions (B,δ) of G and possibly non-continuous Borel-cocycles $\omega \in Z^2(G,\mathbb{T})!$

If G sat. Baum-Connes,
$$\omega_1 \sim_h \omega_2$$
, then $K_*(B^{\omega_1}) \cong K_*(B^{\omega_2})$

Idea for cont. cocycles: Let $\delta: B \to M(B \otimes C^*(G))$ be a normal coaction, and $\omega: G \times G \to \mathbb{T}$ cont. with

 $\forall s, t, r \in G : \omega(s, t)\omega(st, r) = \omega(s, tr)\omega(t, r).$

Idea for cont. cocycles: Let $\delta: B \to M(B \otimes C^*(G))$ be a normal coaction, and $\omega: G \times G \to \mathbb{T}$ cont. with

$$\forall s, t, r \in G : \omega(s, t)\omega(st, r) = \omega(s, tr)\omega(t, r).$$

Let $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, \phi := j_{C_0(G)})$ be the dual weak $G \rtimes G$ -algebra).

Idea for cont. cocycles: Let $\delta: B \to M(B \otimes C^*(G))$ be a normal coaction, and $\omega: G \times G \to \mathbb{T}$ cont. with

$$\forall s, t, r \in G : \omega(s, t)\omega(st, r) = \omega(s, tr)\omega(t, r).$$

Let $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, \phi := j_{C_0(G)})$ be the dual weak $G \rtimes G$ -algebra).

Let
$$u: G \to UM(B \rtimes_{\delta} \widehat{G}) : u(g) := \phi(\omega(g, \cdot))$$
. Then

$$u_{gh} = \omega(g,h)u_g\alpha_g(u_h) \ \forall g,h \in G \implies \widehat{\delta}_{\omega} := \operatorname{Ad} u \circ \widehat{\delta}$$

is a new (ω -twisted) action on $B \rtimes_{\delta} \widehat{G}$ s.t. $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega}, \phi)$ is still a weak $G \rtimes G$ -algebra.

Idea for cont. cocycles: Let $\delta: B \to M(B \otimes C^*(G))$ be a normal coaction, and $\omega: G \times G \to \mathbb{T}$ cont. with

$$\forall s, t, r \in G : \omega(s, t)\omega(st, r) = \omega(s, tr)\omega(t, r).$$

Let $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, \phi := j_{C_0(G)})$ be the dual weak $G \rtimes G$ -algebra).

Let
$$u: G \to UM(B \rtimes_{\delta} \widehat{G}) : u(g) := \phi(\omega(g, \cdot))$$
. Then

$$u_{gh} = \omega(g, h)u_g\alpha_g(u_h) \ \forall g, h \in G \implies \widehat{\delta}_{\omega} := \operatorname{Ad} u \circ \widehat{\delta}$$

is a new (ω -twisted) action on $B \rtimes_{\delta} \widehat{G}$ s.t. $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega}, \phi)$ is still a weak $G \rtimes G$ -algebra.

Define
$$(B^{\omega}, \delta^{\omega}) := ((B \rtimes_{\delta} \widehat{G})_{r}^{G, \widehat{\delta}_{\omega}}, \delta_{r}^{\omega})$$
. Then
$$(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) = (B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega})$$

is the ω -deformed coaction of the normal coaction (B, δ) .

Idea for cont. cocycles: Let $\delta: B \to M(B \otimes C^*(G))$ be a normal coaction, and $\omega: G \times G \to \mathbb{T}$ cont. with

$$\forall s, t, r \in G : \omega(s, t)\omega(st, r) = \omega(s, tr)\omega(t, r).$$

Let $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, \phi := j_{C_0(G)})$ be the dual weak $G \rtimes G$ -algebra).

Let
$$u: G \to UM(B \rtimes_{\delta} \widehat{G}) : u(g) := \phi(\omega(g, \cdot))$$
. Then

$$u_{gh} = \omega(g,h)u_g\alpha_g(u_h) \ \forall g,h \in G \implies \widehat{\delta}_{\omega} := \operatorname{Ad} u \circ \widehat{\delta}$$

is a new (ω -twisted) action on $B \rtimes_{\delta} \widehat{G}$ s.t. $(B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega}, \phi)$ is still a weak $G \times G$ -algebra.

Define
$$(B^{\omega}, \delta^{\omega}) := ((B \rtimes_{\delta} \widehat{G})_{r}^{G, \widehat{\delta}_{\omega}}, \delta_{r}^{\omega})$$
. Then
$$(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) = (B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega})$$

is the ω -deformed coaction of the normal coaction (B, δ) . The case of Borel cocycles is much more technical!

Deformation of μ -coactions

Let (B,δ) be any coaction and let $(B\rtimes_{\delta}\widehat{G},\widehat{\delta},\phi=j_{C_{0}(G)})$ be the (dual) weak $G\rtimes G$ -algebra. Let $\|\cdot\|_{\mu}$ be the C^{*} -norm on $C_{c}(G,B\rtimes_{\delta}\widehat{G})$ such that (B,δ) is a μ -coaction, i.e.,

$$B \rtimes_{\delta} \widehat{G} \rtimes_{\mu} G \cong B \otimes \mathcal{K}(L^{2}(G))$$

As before, if $\omega \in Z^2_{ct}(G,\mathbb{T})$, we obtain a deformed action $\widehat{\delta}_{\omega}: G \curvearrowright B \rtimes_{\delta} \widehat{G}$.

Deformation of μ -coactions

Let (B,δ) be any coaction and let $(B\rtimes_{\delta}\widehat{G},\widehat{\delta},\phi=j_{C_{0}(G)})$ be the (dual) weak $G\rtimes G$ -algebra. Let $\|\cdot\|_{\mu}$ be the C^{*} -norm on $C_{c}(G,B\rtimes_{\delta}\widehat{G})$ such that (B,δ) is a μ -coaction, i.e.,

$$B \rtimes_{\delta} \widehat{G} \rtimes_{\mu} G \cong B \otimes \mathcal{K}(L^{2}(G))$$

As before, if $\omega \in Z^2_{ct}(G,\mathbb{T})$, we obtain a deformed action $\widehat{\delta}_{\omega}: G \curvearrowright B \rtimes_{\delta} \widehat{G}$.

Define $(B^{\omega}, \delta^{\omega}) := ((B \rtimes_{\delta} \widehat{G})^{\mathcal{G}, \widehat{\delta}_{\omega}}_{\mu}, \delta^{\omega}_{\mu})$. Then again:

$$(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) = (B \rtimes_{\delta} \widehat{G}, \widehat{\delta}_{\omega})$$

Recall: There is a bijection of groups

$$H^2(G,\mathbb{T})\cong \operatorname{Ext}(G,\mathbb{T}); \quad [\omega]\mapsto [\mathbb{T}\hookrightarrow G_\omega\twoheadrightarrow G]$$

where
$$G_{\omega}:=G imes \mathbb{T}$$
 with mult. $(g,z)(h,u)=(gh,\omega(g,h)zu).$

Recall: There is a bijection of groups

$$H^2(G,\mathbb{T})\cong \operatorname{Ext}(G,\mathbb{T}); \quad [\omega]\mapsto [\mathbb{T}\hookrightarrow G_\omega\twoheadrightarrow G]$$

where
$$G_{\omega}:=G imes \mathbb{T}$$
 with mult. $(g,z)(h,u)=(gh,\omega(g,h)zu).$

Consider
$$C_0(G_\omega, \iota) := \{ \xi \in C_0(G_\omega) : \xi(g, z) = \overline{z}\xi(g, 1) \}.$$

Recall: There is a bijection of groups

$$H^2(G,\mathbb{T})\cong \operatorname{Ext}(G,\mathbb{T}); \quad [\omega]\mapsto [\mathbb{T}\hookrightarrow G_\omega\twoheadrightarrow G]$$

where $G_{\omega}:=G imes \mathbb{T}$ with mult. $(g,z)(h,u)=(gh,\omega(g,h)zu).$

Consider
$$C_0(G_\omega, \iota) := \{ \xi \in C_0(G_\omega) : \xi(g, z) = \overline{z}\xi(g, 1) \}.$$

Right transl. $\tilde{\sigma}: G_{\omega} \curvearrowright C_0(G_{\omega}, \iota)$ induces an equivariant Morita equiv.

$$(C_0(G), \sigma) \sim_M (C_0(G), (\sigma, \omega))$$

(with
$$_{C_0(G)}\langle \xi, \eta \rangle = \xi \bar{\eta}$$
 and $\langle \xi, \eta \rangle_{C_0(G)} = \bar{\xi} \eta$ etc....).

Recall: There is a bijection of groups

$$H^2(G,\mathbb{T})\cong \operatorname{Ext}(G,\mathbb{T}); \quad [\omega]\mapsto [\mathbb{T}\hookrightarrow G_\omega\twoheadrightarrow G]$$

where $G_{\omega}:=G imes \mathbb{T}$ with mult. $(g,z)(h,u)=(gh,\omega(g,h)zu)$.

Consider
$$C_0(G_\omega, \iota) := \{ \xi \in C_0(G_\omega) : \xi(g, z) = \overline{z}\xi(g, 1) \}.$$

Right transl. $\tilde{\sigma}: G_{\omega} \curvearrowright C_0(G_{\omega}, \iota)$ induces an equivariant Morita equiv.

$$(C_0(G), \sigma) \sim_M (C_0(G), (\sigma, \omega))$$

(with
$$c_0(G)\langle \xi, \eta \rangle = \xi \bar{\eta}$$
 and $\langle \xi, \eta \rangle_{C_0(G)} = \bar{\xi} \eta$ etc....).

Write
$$(A, \alpha, \phi) = (B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_G)$$
. We define

$$(A^{\omega},\alpha^{\omega},\phi^{\omega}):=\big(\mathcal{K}(C_0(G_{\omega},\iota)\otimes_{C_0(G)}A),\operatorname{Ad}(\tilde{\sigma}\otimes\beta),\phi^{\omega}\big)$$

with ϕ^{ω} the left $C_0(G)$ -action on $C_0(G_{\omega}, \iota) \otimes_{C_0(G)} A$.

Recall: There is a bijection of groups

$$H^2(G,\mathbb{T})\cong \operatorname{Ext}(G,\mathbb{T}); \quad [\omega]\mapsto [\mathbb{T}\hookrightarrow G_\omega\twoheadrightarrow G]$$

where $G_{\omega}:=G imes \mathbb{T}$ with mult. $(g,z)(h,u)=(gh,\omega(g,h)zu)$.

Consider
$$C_0(G_\omega, \iota) := \{ \xi \in C_0(G_\omega) : \xi(g, z) = \overline{z}\xi(g, 1) \}.$$

Right transl. $\tilde{\sigma}: G_{\omega} \curvearrowright C_0(G_{\omega}, \iota)$ induces an equivariant Morita equiv.

$$(C_0(G),\sigma)\sim_M (C_0(G),(\sigma,\omega))$$

(with
$$c_0(G)\langle \xi, \eta \rangle = \xi \bar{\eta}$$
 and $\langle \xi, \eta \rangle_{C_0(G)} = \bar{\xi} \eta$ etc....).

Write
$$(A, \alpha, \phi) = (B \rtimes_{\delta} \widehat{G}, \widehat{\delta}, j_G)$$
. We define

$$(A^{\omega}, \alpha^{\omega}, \phi^{\omega}) := (\mathcal{K}(C_0(G_{\omega}, \iota) \otimes_{C_0(G)} A), \mathsf{Ad}(\tilde{\sigma} \otimes \beta), \phi^{\omega})$$

with ϕ^{ω} the left $C_0(G)$ -action on $C_0(G_{\omega}, \iota) \otimes_{C_0(G)} A$.

Define
$$(B^{\omega}, \delta^{\omega}) := ((A^{\omega})_{\mu}^{G, \alpha^{\omega}}, \delta_{\mu}^{\omega})$$
. Then

$$(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) \cong (A^{\omega}, \alpha^{\omega}) \sim_{M} (B \rtimes_{\delta} G, (\widehat{\delta}, \omega)).$$

• The above procedure extends the BNS-deformation to μ -coactions for correspondence crossed-product functors $\rtimes_{\mu}!$

- The above procedure extends the BNS-deformation to μ-coactions for correspondence crossed-product functors ×_μ!
- If G is K-amenable and satisfies Baum-Connes, we also get

$$\omega_1 \sim_h \omega_2 \Rightarrow K_*(B^{\omega_1}) \cong K_*(B^{\omega_2}).$$

- The above procedure extends the BNS-deformation to μ -coactions for correspondence crossed-product functors $\bowtie_{\mu}!$
- If G is K-amenable and satisfies Baum-Connes, we also get

$$\omega_1 \sim_h \omega_2 \Rightarrow K_*(B^{\omega_1}) \cong K_*(B^{\omega_2}).$$

• If $j_{C_0(G)}: C_0(G) \to M(B \rtimes_{\delta} \widehat{G})$ extends to $L^{\infty}(G)$, then we always have

$$B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G} \cong A^{\omega} \cong A = B \rtimes_{\delta} \widehat{G} A^{\omega} = A$$

This holds for all dual coctions (even for Fell bundles).

• The twisted system $(B \rtimes_{\delta} G, (\widehat{\delta}, \omega))$ always stabilizes to $(B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$ with $\mathcal{K} := \mathcal{K}(L^{2}(G))$. Hence $(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) \sim_{M} (B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$.

- The above procedure extends the BNS-deformation to μ-coactions for correspondence crossed-product functors ×_μ!
- If G is K-amenable and satisfies Baum-Connes, we also get $\omega_1 \sim_h \omega_2 \Rightarrow K_*(B^{\omega_1}) \cong K_*(B^{\omega_2}).$
- If $j_{C_0(G)}: C_0(G) \to M(B \rtimes_{\delta} \widehat{G})$ extends to $L^{\infty}(G)$, then we always have

$$B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G} \cong A^{\omega} \cong A = B \rtimes_{\delta} \widehat{G} A^{\omega} = A$$

This holds for all dual coctions (even for Fell bundles).

- The twisted system $(B \rtimes_{\delta} G, (\widehat{\delta}, \omega))$ always stabilizes to $(B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$ with $\mathcal{K} := \mathcal{K}(L^{2}(G))$. Hence $(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) \sim_{\mathcal{M}} (B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$.
- Via $H^2(G, \mathbb{T}) \cong \operatorname{Br}_G(\mathcal{K})$; $[\omega] \mapsto [\operatorname{Ad} \rho^{\omega}]$ we obtain an (equivalent!) deformation via actions $\gamma : G \curvearrowright \mathcal{K}!$

- The above procedure extends the BNS-deformation to μ-coactions for correspondence crossed-product functors ×_μ!
- If G is K-amenable and satisfies Baum-Connes, we also get

$$\omega_1 \sim_h \omega_2 \Rightarrow K_*(B^{\omega_1}) \cong K_*(B^{\omega_2}).$$

• If $j_{C_0(G)}: C_0(G) \to M(B \rtimes_{\delta} \widehat{G})$ extends to $L^{\infty}(G)$, then we always have

$$B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G} \cong A^{\omega} \cong A = B \rtimes_{\delta} \widehat{G} A^{\omega} = A$$

This holds for all dual coctions (even for Fell bundles).

• The twisted system $(B \rtimes_{\delta} G, (\widehat{\delta}, \omega))$ always stabilizes to $(B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$ with $\mathcal{K} := \mathcal{K}(L^{2}(G))$. Hence $(B^{\omega} \rtimes_{\delta^{\omega}} \widehat{G}, \widehat{\delta^{\omega}}) \sim_{M} (B \rtimes_{\delta} G \otimes \mathcal{K}, \widehat{\beta} \otimes \operatorname{Ad} \rho^{\omega})$.

- Via $H^2(G, \mathbb{T}) \cong \operatorname{Br}_G(\mathcal{K})$; $[\omega] \mapsto [\operatorname{Ad} \rho^{\omega}]$ we obtain an (equivalent!) deformation via actions $\gamma : G \curvearrowright \mathcal{K}$!
- Deformation via actions on $\mathcal K$ behaves well w.r.t continuous fields of actions $X \ni x \mapsto \gamma_x : G \curvearrowright \mathcal K!$

Continuity

By a continuous family of actions $X \ni x \mapsto \gamma_x : G \curvearrowright \mathcal{K}$ we understand a $C_0(X)$ -linear action $\gamma : G \curvearrowright C_0(X, \mathcal{K})$, which induces actions $\gamma_x : G \curvearrowright \mathcal{K}$ on the fibres.

Theorem (Buss-E '23) Let $\gamma: G \curvearrowright C_0(X, \mathcal{K})$ be as above and let $\delta: B \to M(B \otimes C^*(G))$ be a μ -coaction for some correspondence cp functor \rtimes_{μ} .

Then our constructions yield a field of C^* -algebras $\{\mathcal{B}^\gamma:q_x:\mathcal{B}^\gamma_\mu\to\mathcal{B}^{\gamma_x}_\mu\}$ together with a $C_0(X)$ -linear Morita equivalence

$$\mathcal{B}^{\gamma} \sim_{M} ((B \rtimes_{\delta} \widehat{G}) \otimes C_{0}(X, \mathcal{K})) \rtimes_{\widehat{\delta} \otimes \gamma, \mu} G.$$

Thus \mathcal{B}^{γ} has the same continuity properties as the crossed product!

Fell-bundles Suppose that $\mathcal{A}:=\dot{\cup}\{A_g:g\in G\}$ is a (continuous) Fell-bundle over G. There is a multiplication and involution

$$\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}, \quad *: \mathcal{A} \to \mathcal{A}$$

which induce a *-algebra structure on $C_c(A)$.

Fell-bundles Suppose that $\mathcal{A}:=\dot{\cup}\{A_g:g\in G\}$ is a (continuous) Fell-bundle over G. There is a multiplication and involution

$$\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}, \quad *: \mathcal{A} \to \mathcal{A}$$

which induce a *-algebra structure on $C_c(A)$. For $f \in C_c(A)$ let

$$\|f\|_{\mathsf{max}} := \mathsf{sup}\{\|\pi(f)\| : \pi : \mathcal{C}_c(\mathcal{A}) o \mathcal{B}(\mathcal{H}) \text{ is } L^1\text{-cont. } *\text{-rep.}\}$$

Then
$$C^*_{\max}(A) := \overline{C_c(A)}^{\|\cdot\|_{\max}}$$
.

Fell-bundles Suppose that $\mathcal{A}:=\dot{\cup}\{A_g:g\in G\}$ is a (continuous) Fell-bundle over G. There is a multiplication and involution

$$\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}, \quad *: \mathcal{A} \to \mathcal{A}$$

which induce a *-algebra structure on $C_c(\mathcal{A})$. For $f \in C_c(\mathcal{A})$ let

$$\|f\|_{\mathsf{max}} := \mathsf{sup}\{\|\pi(f)\| : \pi : \mathcal{C}_c(\mathcal{A}) \to \mathcal{B}(\mathcal{H}) \text{ is } L^1\text{-cont. } *\text{-rep.}\}$$

Then
$$C^*_{\max}(A) := \overline{C_c(A)}^{\|\cdot\|_{\max}}$$
.

Moreover, for any corresp. cp functor there exists

$$C^*_{\mu}(\mathcal{A}) := \overline{C_c(\mathcal{A})}^{\|\cdot\|_{\mu}}$$
. They carry coactions

$$\delta: C^*_{\mu}(\mathcal{A}) \to M(C^*_{\mu}(\mathcal{A}) \otimes C^*(G)); A_g \ni a_g \mapsto a_g \otimes g$$

Fell-bundles Suppose that $\mathcal{A}:=\dot{\cup}\{A_g:g\in G\}$ is a (continuous) Fell-bundle over G. There is a multiplication and involution

$$\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}, \quad *: \mathcal{A} \to \mathcal{A}$$

which induce a *-algebra structure on $C_c(\mathcal{A})$. For $f \in C_c(\mathcal{A})$ let

$$\|f\|_{\mathsf{max}} := \mathsf{sup}\{\|\pi(f)\| : \pi : \mathcal{C}_c(\mathcal{A}) \to \mathcal{B}(\mathcal{H}) \text{ is } L^1\text{-cont. } *\text{-rep.}\}$$

Then $C^*_{\max}(\mathcal{A}) := \overline{C_c(\mathcal{A})}^{\|\cdot\|_{\max}}$.

Moreover, for any corresp. cp functor there exists

$$C^*_\mu(\mathcal{A}) := \overline{C_c(\mathcal{A})}^{\|\cdot\|_\mu}.$$
 They carry coactions

$$\delta: C^*_{\mu}(\mathcal{A}) \to M(C^*_{\mu}(\mathcal{A}) \otimes C^*(G)); A_g \ni a_g \mapsto a_g \otimes g$$

For $\omega \in Z^2(G,\mathbb{T})$ we can 'twist' multiplication on \mathcal{A} by ω to obtain a new Fell-bundle \mathcal{A}_{ω} . Then $(C^*_{\mu}(\mathcal{A})^{\omega}, \delta^{\omega}) = (C^*_{\mu}(\mathcal{A}_{\omega}), \delta_{\omega})$

Fell-bundles Suppose that $\mathcal{A}:=\dot{\cup}\{A_g:g\in G\}$ is a (continuous) Fell-bundle over G. There is a multiplication and involution

$$\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}, \quad *: \mathcal{A} \to \mathcal{A}$$

which induce a *-algebra structure on $C_c(\mathcal{A})$. For $f \in C_c(\mathcal{A})$ let

$$||f||_{\mathsf{max}} := \mathsf{sup}\{||\pi(f)|| : \pi : \mathcal{C}_{c}(\mathcal{A}) \to \mathcal{B}(\mathcal{H}) \text{ is } L^{1}\text{-cont. } *\text{-rep.}\}$$

Then $C^*_{\max}(A) := \overline{C_c(A)}^{\|\cdot\|_{\max}}$.

Moreover, for any corresp. cp functor there exists

$$C^*_\mu(\mathcal{A}) := \overline{C_c(\mathcal{A})}^{\|\cdot\|_\mu}.$$
 They carry coactions

$$\delta: C^*_{\mu}(\mathcal{A}) \to \mathcal{M}(C^*_{\mu}(\mathcal{A}) \otimes C^*(G)); A_g \ni a_g \mapsto a_g \otimes g$$

For $\omega \in Z^2(G,\mathbb{T})$ we can 'twist' multiplication on \mathcal{A} by ω to obtain a new Fell-bundle \mathcal{A}_{ω} . Then $(C_{\mu}^*(\mathcal{A})^{\omega}, \delta^{\omega}) = (C_{\mu}^*(\mathcal{A}_{\omega}), \delta_{\omega})$ This covers all examples if G is discrete! (Makoto Yamashita).

Let $G = \mathbb{R}^2 \rtimes SL(2,\mathbb{R})$ then for each $\theta \in \mathbb{R}$ there is a canonical cocycle $\omega_{\theta} \in Z^2(\mathbb{R},\mathbb{T})$ given by

$$\omega_{\theta}(\left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}\right),\left(\begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix}\right)) = e^{\pi\theta(x_1y_2-x_2y_1)}$$

This cocycle is invariant under the action of $SL(2,\mathbb{R})$ on \mathbb{R}^2 , hence ω_{θ} extends to a 2-cocycle $\widetilde{\omega}_{\theta}$ on $G = \mathbb{R}^2 \rtimes SL(2,\mathbb{R})$.

Let $G = \mathbb{R}^2 \rtimes SL(2,\mathbb{R})$ then for each $\theta \in \mathbb{R}$ there is a canonical cocycle $\omega_{\theta} \in Z^2(\mathbb{R},\mathbb{T})$ given by

$$\omega_{\theta}(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = e^{\pi\theta(x_1y_2 - x_2y_1)}$$

This cocycle is invariant under the action of $SL(2,\mathbb{R})$ on \mathbb{R}^2 , hence ω_θ extends to a 2-cocycle $\widetilde{\omega}_\theta$ on $G=\mathbb{R}^2\rtimes SL(2,\mathbb{R})$. So for any μ -coaction $\delta:B\to M(B\otimes C^*(G))$ (with \rtimes_μ a correspondence cp functor) we obtain deformations

$$(B_{ heta},\delta_{ heta}):=(B_{\mu}^{ ilde{\omega}_{ heta}},\delta_{\mu}^{ ilde{\omega}_{ heta}}),\quad heta\in\mathbb{R}$$

which are all KK-equivalent.

If we start with a normal coaction, this gives a continuous field of deformed algebras over \mathbb{R} !

Let $G = \mathrm{PSL}(2,\mathbb{R})$. Then $H^2(G,\mathbb{T}) \cong \mathbb{T}$.

So, given a μ -coaction $\delta: B \to M(B \otimes C^*(G))$ for a correspondence c.p. functor \rtimes_{μ} , we obtain a family of deformed coactions $(B^z_{\mu}, \delta^z_{\mu})$, $z \in \mathbb{T}$.

Let $G = \mathrm{PSL}(2,\mathbb{R})$. Then $H^2(G,\mathbb{T}) \cong \mathbb{T}$.

So, given a μ -coaction $\delta: B \to M(B \otimes C^*(G))$ for a correspondence c.p. functor \rtimes_{μ} , we obtain a family of deformed coactions $(B^z_{\mu}, \delta^z_{\mu})$, $z \in \mathbb{T}$.

Note In case $B=\mathbb{C}$ with trivial coaction, we obtain the twisted group algebras $B_{\mu}^{z}=C_{\mu}^{*}(G,\omega_{z})$.

Let $G = \mathrm{PSL}(2,\mathbb{R})$. Then $H^2(G,\mathbb{T}) \cong \mathbb{T}$.

So, given a μ -coaction $\delta: B \to M(B \otimes C^*(G))$ for a correspondence c.p. functor \rtimes_{μ} , we obtain a family of deformed coactions $(B_{\mu}^{\mathbf{z}}, \delta_{\mu}^{\mathbf{z}})$, $z \in \mathbb{T}$.

Note In case $B=\mathbb{C}$ with trivial coaction, we obtain the twisted group algebras $B^z_\mu=C^*_\mu(G,\omega_z)$.

Fact: For z=-1 one can show that $C^*_{\max}(G,\omega_{-1})=C^*_r(G,\omega_{-1})$. This follows from the fact that the representations of these algebras correspond to the unitary reps of $SL(2,\mathbb{R})$ which restrict to the non-trivial character of the center $\mathbb{Z}_2=Z(SL(2,\mathbb{R}))$.

Let $G = \mathrm{PSL}(2,\mathbb{R})$. Then $H^2(G,\mathbb{T}) \cong \mathbb{T}$.

So, given a μ -coaction $\delta: B \to M(B \otimes C^*(G))$ for a correspondence c.p. functor \rtimes_{μ} , we obtain a family of deformed coactions $(B^z_{\mu}, \delta^z_{\mu})$, $z \in \mathbb{T}$.

Note In case $B=\mathbb{C}$ with trivial coaction, we obtain the twisted group algebras $B_{\mu}^{z}=C_{\mu}^{*}(G,\omega_{z})$.

Fact: For z=-1 one can show that $C^*_{\max}(G,\omega_{-1})=C^*_r(G,\omega_{-1})$. This follows from the fact that the representations of these algebras correspond to the unitary reps of $SL(2,\mathbb{R})$ which restrict to the non-trivial character of the center $\mathbb{Z}_2=Z(SL(2,\mathbb{R}))$.

Thus the deformation via \bowtie_{\max} deforms $C^*_{\max}(G)$ to $C^*_{\max}(G, \omega_{-1})$ and deformations via \bowtie_r deforms $C^*_r(G)$ to $C^*_r(G, \omega_{-1}) = C^*_{\max}(G, \omega_{-1})$.

Some References

- [1] J. Bhowmick, S. Neshveyev, and A. Sangha, *Deformation of operator algebras by Borel cocycles*, J. Functional Analysis **265** (2013), 983–1001.
- [2] A. Buss and S. Echterhoff, Universal and exotic generalized fixed-point algebras for weakly proper actions and duality, Indiana Mathematics J. 63 (2014), no. 6, 1659–1701.
- [3] ______, Rieffel proper actions, Journal of Operator Theory 75 (2016), no. 1, 49–73.
- [4] ______, A new approach to (exotic) deformation of C*-algebras via coactions. arXiv:2305.09997.
- [5] A. Buss, S. Echterhoff, and S. Willett, Exotic crossed products and the Baum-Connes conjecture, J. Reine Angew. Math. 740 (2018), 111–159.
- [6] Pavel Kasprzak, Rieffel deformation via crossed products, J. Funct. Anal. 257 (2009), no. 5, 1288–1332.
- [7] S. Neshveyev and L. Tuset, Deformation of C^* -algebras by cocycles on locally compact quantum groups, Adv. Math. **254** (2014), 454–496.