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Recall: A group action G ~ X is proper iff

VK, W C X compact : {g € G : gK N W} is compact.

Then: Define a C.(G, Go(X)) C Go(X) x G-inner product on
Ce(X) by -
(€ m)(g,x) = Alg) V0 )n(g ™ x).

Thus C.(X) completes to a Co(X) x G-Hilbertmodule F(X).
It is full, iff G ~ X is free, i.e., if gx = x = g = e ¥(g, x).

We get

Go(G\X) = K(F(X)) via (f-&)(x) = F(Gx)E(x).
Therefore F(X) becomes a

Go(G\X) — (F(X), F(X)) € Go(X) x G

equivalence bimodule.
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Now let a: G ~ A. Let LY (G, A) = AV2LY(G,A) N LY(G, A).
« is Rieffel proper iff there exists a dense subspace R C A s.t.

(&M ax,c =g A(g) V2 ag(n)] € LA(G,A) VEneR.

Then (-,-) ax, ¢ defines an A x, G valued inner product on

Fo(A) = R-LK(G, A) with a-p = /G 5(g) V2ag(¢o(e ™)) de.

Moreover, for £, € Fo(A) let

wolEun) = /G " ag(en) € M(A)C.

Let A® := 46(Fo(A), Fo(A)) € M(A)C. Then F(A) := Fo(A)
becomes a

AC — (F(A), F(A)) ax,c CAX, G

equivalence bimodule.
a: G~ Als called saturated, if (-, ) ax, ¢ is fulll
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Some questions about generalized fixed-point algebras

Definition (Rieffel '90) The algebra A is called a generalized
fixed-point algebra for the proper action oo : G ~ A.

Questions

1. Given a proper action a.: G ~ A. Is A® uniquely defined?
Answer (Meyer and Buss-E): No! In general A® does depend
on R C Al

2. (Rieffel) Is there an analogous theory for maximal crossed
products, i.e., an equivalence

AL . — (F(A), F(A)) AsximxG € A Xmax G 7

Answer: Not clear in general, but for a large class of
examples, such theory exists!

3. What are the examples?
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Definition(Buss-E '13) Suppose G ~ X is proper. A G-C*-algebra
(A, G, ) is called weak X x G-algebra if 3 a G-equivariant,
nondegenerate (ie. s(co(x))a = 4) *-homomorphism ¢ : Co(X) — M(A).
(Recall: If ¢(Co(X)) € ZM(A), then (A, ) is an X x G-algebra!)
Then: ¢ %, G: G(X) ¥ G = M(Ax, G), X, = Xr, Xmax OF
other exotic crossed products...
Let Fo(A) := ¢(Ce(X))A. For £ = ¢(f)a,n = ¢(h)b € Fc(A) we
get

(& m)(g) = Alg) 2(8(F) - a)"ag(d(h) - b) = a*(A(g) "/ *¢(Frg(h))) b
=a" [(b% G( f h CoX)NG)]b

In particular, (£,§) = a* [¢ X G((f, f) co(x) NG)] a>0in

M(A %, G)!

Thus (Fc(A), (-, -)) completes to a A x,, G-Hilbert module
(Fu(A), (-, ) ax,c) for every crossed-product norm | - ||, on
Cc(G,A)! If G ~ X is free, then (-, ) ax,c is full.
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We define the fixed-point algebra with compact supports as

AC = C(G\X)-{m € M(A)C : f-m,m-f € Ac}-C.(G\X) C M(A)°.

Then AS acts on the left of F-(A) via m- & = m¢é € M(A) and
there is a compatible AS-valued inner product

pclam) = /G og(€r) dg st aele)C = E0.Ocien

Therefore the left action induces a *-homomorphism

V: AS — K(F,(A)) with dense image.

Definition (Buss-E) Let || - ||, be a crossed-product norm on
Cc(G,A). Then we call AS := W(AS) = K(F,(A)) the

p-generalized fixed-point algebra for the weak X x G-algebra
(A, ). We get Afj ~m (Fu(A), Fu(A)) CAx, G.
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The case X = G and Landstad duality for coactions

In what follows we equip C*(G) with the comultiplication
dg : C*(G) = M(C*(G)® C*(G));g—g®g.

Recall A coaction of G on B is a #-hom. 6 : B - M(B ® C*(G))
such that

(idg ®3¢)0d = (§®idg)od and &(B)(1®C*(G)) = B® C*(G).
Coaction crossed product If (B, ) is a coaction of G, then let

jg: B—= M(B®K(L*(G))); jg(b) = (idg @) o i(b)
Jo : G(G) = M(B@K(L*(G))): Jcye)(f) =1® M¢

Then B x5 G := jg(B)jc(Co(G)) € M(B @ K(L%(G))).

Dual action: 0: G ~ B x5 G; o (ja(b)ic(f)) = ja(b)jc(og(f))
with o : G ~ Go(G) : (o4(F))(h) = f(hg).

Thus: (B x5 G,5,6 = jco(6)) 1s @ weak G x G-algebra!
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‘suitable’ intermediate crossed product). The dual coaction

au,:Ax, G — MAx,G® CY(G))
isgivenby A>ar—is(a)®1 and Gog—ig(g)®g
(with (ia, ic) : (A, G) = M(A x,, G) the canonical maps).
Takesaki-Takai duality: A x, G x5, G 2 A® K(L*(G)).

Katayama-duality: If (B, ) is a coaction, we always have a
canonical surjection

W= (jg x je) x (1®p): Bxs G x5, G — B®K(L*(G))

Definition (Kaliszewski-E-Quigg, '04) ¢ is called maximal if W is an
isomorphism and normal (or reduced), if W factors through
B x5 G x5, G. In general, W factor faithfully through some

intermediate crossed product B x5 G x5 G (~ § is a p-coaction).
’H
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Every weak G x G-alg. (A, a, ¢) is of the form (B x5 G, 4, jcy(c))!
Theorem (Buss, E. (2014)): Let (A, a, ¢) be as above. For every

intermediate duality crossed-product A x,, G there exists a (unique
up to isom.) p-coaction (B,,,d,) such that

(A7a7¢) = (BI.L N(SN 675/\“]@(6))-

dea of proof Let F,(A) = Co(G)A" be the K(Fu(A)) — Ax, G
Morita equivalence. Construct a a,-compatible coaction ¢z, on
Fu(A) wich then induces a coaction Ja6 On A/f = IC(Fu(A)). One

then checks that (By,6,) := (AS 5Aﬁ) does the job. O

o

Corollary If (B, ¢) is a coaction and (B x5 G, g,jCO(G)) is the (dual)

weak G % G-algebra, then there is a unique intermediate crossed

product (B x5 G) x,, G such that (B,d) = (B,,0,).

Indeed: 3 a unique C*-norm || - ||, on C(G, B x5 G) such that
VB x5 G xmax G — B® K(L3(G))

factors through an iso B x5 G %, G = B ® K(L2(G))....
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symmetric. Using 3, Rieffel constructs a new (deformed)

multiplication %, on some subalgebra S(B) C B and obtains a
deformed C*-algebra B, := S(B).

Kasprzak '09 uses Landstad duality to generalize Rieffel
deformation via actions 3 : G ~ B for G the dual group of an
abelian Ic group G with deformation parameter w € Z%(G,T).

He constr. a deformed system (B%, 8“) s.t.
(BY x40 G, B%) = (B x4 G, (B,w)).
Bhowmick et al: If G = R”, w(x,y) := e27¥)  then B = B!

Yamashita '11 (G discrete), Bhowmick-Neshveyev-Sangha '13
Extend this deformation procedure to possibly non-abelian groups
by replacing actions (B, 3) of G by normal coactions (B,6) of G
and possibly non-continuous Borel-cocycles w € Z2(G, T)!

If G sat. Baum-Connes, wy ~j wy, then K (B“1) = K, (B“2).
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Idea for cont. cocycles: Let 6 : B — M(B ® C*(G)) be a normal
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Deformation via coactions

Idea for cont. cocycles: Let 6 : B — M(B ® C*(G)) be a normal
coaction, and w: G x G — T cont. with

Vs, t,r € G: w(s, t)w(st,r) =w(s, tr)w(t,r).
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Idea for cont. cocycles: Let 6 : B — M(B ® C*(G)) be a normal
coaction, and w: G x G — T cont. with

Vs, t,r € G: w(s, t)w(st,r) =w(s, tr)w(t,r).
Let (B x5 G, 8, := je,(c)) be the dual weak G x G-algebra).
Let wu:G— UM(Bxs5G):u(g) :=d(w(g,-)). Then
ugh = w(g, h)ugag(up) Vg, he G = 6w :=Aduod

is a new (w-twisted) action on B X G s.t. (B x5 G, gw,gb) is still a
weak G x G-algebra.

Define  (B¥,6%) == ((B x5 G),5%). Then
(B® x50 G,6%) = (B x5 G, 0,)

is the w-deformed coaction of the normal coaction (B, 9).
The case of Borel cocycles is much more technical!
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Let (B, ¢) be any coaction and let (B x; G,5,¢= Jco(G)) be the
(dual) weak G x G-algebra. Let || - ||, be the C*-norm on

C(G, B x5 6) such that (B, ) is a p-coaction, i.e.,
B x;5G x, G=~B®K(L%(G))

As before, if w € Z2%(G,T), we obtain a deformed action
6, G Bx;sG.

Define (B%,0%) := ((B X5 @)g’g‘”,él‘j). Then again:

(BY x50 G,0%) = (B x4 G,0,)
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where G, :=G x T with mult. (g,z)(h,u) = (gh,w(g, h)zu).
Consider Co(Gu, ¢) 1= {£ € Go(Gu) : &(g, 2) = 2¢(g, 1)}

Right transl. 6 : G, ~ Co(Gy, ) induces an equivariant Morita
equiv.

(Go(G),0) ~m (Co(G), (0,w))
(with ¢,(6)(&:m) = &7 and (£,1) ¢,(6) = &N etc....).
Write (A, a,, ) = (B x5 G, 8, jg). We define
(AY, 0, ¢) := (K(Co(Gus, 1) ®cy() A) Ad(G ® B), ¢)
with ¢ the left Co(G)-action on Co(Gu,t) ®cy(6) A.
Define (B, 6*) := ((A“)5*",8%). Then
(BY x50 G,09) 22 (A%, %)~y (B %5 G, (6,w)).
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Some results

The above procedure extends the BNS-deformation to
p-coactions for correspondence crossed-product functors x,!
If G is K-amenable and satisfies Baum-Connes, we also get

w1 ~p w2 = Ki(B*1) = K (B“2).
If jo(6) : Co(G) — M(B x5 G) extends to L>°(G), then we
always have

BY x50 G =AY = A= B x5 GAY = A

This holds for all dual coctions (even for Fell bundles).

The twisted system (B xs G, (S,w)) always stabilizes to
(B x5 G®K,B®Adp?) with K := K(L2(G)). Hence
(B 3150 G,0%) ~p (B x5 G2 K, B ®Adp).
Via H?(G,T) = Brg(K); [w] — [Ad p*] we obtain an
(equivalent!) deformation via actions v : G ~ K!

Deformation via actions on IC behaves well w.r.t continuous
fields of actions X 2 x — v, : G ~ K



Continuity

By a continuous family of actions X 3 x — vy : G ~ K we
understand a Co(X)-linear action v : G ~ Co(X, K), which
induces actions vy : G ~ K on the fibres.

Theorem (Buss-E '23) Let v : G ~ Go(X, K) be as above and let
d:B— M(B® C*(G)) be a p-coaction for some correspondence
cp functor ;.

Then our constructions yield a field of C*-algebras
{B7 : qx : B}, — B} together with a Co(X)-linear Morita
equivalence

B~y ((B x5 G) ® Co(X,K)) G.

5@,

Thus B7 has the same continuity properties as the crossed product!
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Fell-bundles Suppose that A := U{A; : g € G} is a (continuous)
Fell-bundle over G. There is a multiplication and involution

CAXxA— A s A A

which induce a *-algebra structure on C.(A).
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Examples
Fell-bundles Suppose that A := U{A; : g € G} is a (continuous)
Fell-bundle over G. There is a multiplication and involution
CAXxA— A s A A
which induce a *-algebra structure on C.(A). For f € C.(A) let

[ llmax := sup{||7(F)|| : 7 : Cc(A) — B(H) is L*-cont. *-rep.}

Then Cz, (A) = C(A) ™.

Moreover, for any corresp. cp functor there exists
Ci(A) == CC(.A)H'”“. They carry coactions

6:Cu(A) = M(Ci(A) @ C(G))iAg D agr ag®g

For w € Z2(G,T) we can ‘twist’ multiplication on A by w to
obtain a new Fell-bundle A,,. Then (C;(A)“,6*) = (C;(Au), 0w)
This covers all examples if G is discrete! (Makoto Yamashita).
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Examples

Let G = R? x SL(2,R) then for each # € R there is a canonical
cocycle wy € Z?(R, T) given by

LL}@( ( ié ) 5 (;é ) ) = eWG(XI}Q—ngl)

This cocycle is invariant under the action of SL(2,R) on R?, hence
wp extends to a 2-cocycle @y on G = R? x SL(2, R).

So for any p-coaction 6 : B — M(B ® C*(G)) (with x, a
correspondence cp functor) we obtain deformations

(By, 0p) := (5;39,5739), 0eRrR

which are all KK-equivalent.
If we start with a normal coaction, this gives a continuous field of
deformed algebras over R!



Examples

Let G = PSL(2,R). Then H?(G,T) = T.

So, given a p-coaction 6 : B — M(B ® C*(G)) for a
correspondence c.p. functor x,, we obtain a family of deformed
coactions (B, 47), z € T.



Examples

Let G = PSL(2,R). Then H?(G,T) = T.

So, given a p-coaction 6 : B — M(B ® C*(G)) for a
correspondence c.p. functor x,, we obtain a family of deformed
coactions (B, 47), z € T.

Note In case B = C with trivial coaction, we obtain the twisted
group algebras B} = C;(G,w;).



Examples

Let G = PSL(2,R). Then H?(G,T) = T.

So, given a p-coaction 6 : B — M(B ® C*(G)) for a
correspondence c.p. functor x,, we obtain a family of deformed
coactions (B, 47), z € T.

Note In case B = C with trivial coaction, we obtain the twisted
group algebras B} = C;(G,w;).

Fact: For z = —1 one can show that ., (G,w_1) = C(G,w_1).
This follows from the fact that the representations of these
algebras correspond to the unitary reps of SL(2,R) which restrict
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Let G = PSL(2,R). Then H?(G,T) = T.

So, given a p-coaction 6 : B — M(B ® C*(G)) for a
correspondence c.p. functor x,, we obtain a family of deformed
coactions (B, 47), z € T.
Note In case B = C with trivial coaction, we obtain the twisted
group algebras B} = C;(G,w;).

max(G7w*1) = Cr*(vafl)'
This follows from the fact that the representations of these

algebras correspond to the unitary reps of SL(2,R) which restrict
to the non-trivial character of the center Z, = Z(SL(2,R)).

Fact: For z = —1 one can show that C*

Thus the deformation via Xmax deforms C .. (G) to Cr .. (G,w_1)
and deformations via x, deforms C}(G) to
Cr*(Gaw—l) =G (G7w—1)'

max
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